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We study the influence of a constant axial magnetic field on the propagation of magnetoelastic compression
waves from a cavity containing a magnetoacoustic medium with a jump of the surface force given at the
wall. The problem is examined in [1] in the case in which there is a vacuum in the cavity and an ideal
conductor outside, without any study of the effect of a magnetic field.

Here we examine the problem for both weak and ideal conductivities. The equations are linearized and
Laplace transformed. Approximate asymptotic solutions are constructed which are valid in the vicinity of
the wave fronts. The solutions are studied analytically and numerically.

1. If we assume that the conditions of elastic isotropicity, geometric and elastic linearity, and isotropicity of the
dielectric and magnetic permeabilities are satisfied for a magnetoelastic medium, then the system of magnetoelasticity
equations is

GV?u + (b + @) grad dive = p, 2% —j x B—p,E—F, (1.1)
robH=j+—aa—]3, rotE=—%, divB=0, divD=p,, (1.2)
j:c(E+%xB), B—pH, D=:E. (1.3)

Under analogous assumptions the equations of a magnetoacoustic medium have the form
——gradp:po—(;‘tl—j1 x B* —p,* E* — Fo , (1.4)
%—l—podiVV':O, p=plo)- (1.5)
The system (1.4), (1.5) is also supplemented by equations analogous to (1.2), (1.3).

The conservation laws lead to the following boundary conditions at the interface of the two media:

%’i =0, (O Tini= G +Ten' + Q@ (i, k=1,2,3), (1.6)

n-(B—B) =0, nxH—-H)=0, n-(D—D% =0, nx(E—E)=0. (1.7)
Here

Su. ou 1
Gikzcikjl_;‘< S l>, Ty = 6B,y + pHHy — — 8y (eE? + pH?) .

3z, U oa;

In the following we assume that there are no mass forces (F=F% = 0) or free electrical charges (pe = e =0)in
either of the media. In the magnetoelastic medium we also neglect the displacement currents (6D/8t = 0), and we
consider the magnetoacoustic medium to be nonconducting {62 = 0) and isentropic. We represent the magnetic field as the
sum of the unperturbed and perturbed components H = Hy + h, where |hl < |Hgl, which permits linearization of all the

equations.

With account for these assumptions, after some transformations we obtain from (1.1)~(1.3) for the
magnetoelastic medium

GV2u + (A + G) grad divu = p, 2 —p (rot h) x H, , (1.8)

oh 1 & .
W:,_Evthrroc(—a“T>< H0>, divh =0, (1.9)
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and from (1.4) and (1.5) for the magnetoacoustic medium

1 & g1 0\fh®y
(v—gam)o=0  (V—ram){al=0 (1.10)
rothams-%et—a, roteﬂ=~—p%i;1, v = ~—grad @, p:po%. (1.11)

For weak conductivity all the quantities can be expanded in terms of the small magnetic Reynolds number Ry, and
we can retain in the equations terms of first order of smallness [2]. In this approximation the induced magnetic fields
are quantities of higher order of smallness [3]. In this case the last term in (1.8) and the first equation of (1.9} take the
form

a 3
~pa(a‘: X Ho) % Hy, roth :7%:73% % Hy . (1.12)

For ideal conductivity the last term in (1.8), Eq. (1.9), and the first equation of {1.3) reduce to the form

—plrotrot (u x H))] x Hy, h=rot(u X Hy), e=—p— X Hy. (1.13)

2. Let us examine in the r, 8, z cylindrical coordinate system a magnetoelastic medium with a cylindrical cavity
of radius a, filled with a magnetoacoustic medium, subjected to the undisturbed magnetic field (0, 0, By,) and the
action on the cavity wall of the load Q, = —q;s(t), where s(t) is the Heaviside function.

Introducing dimensionless parameters by the formulas

1 « c . ‘ 1
(r*, u®) = —(r w), "=t @ )= ~c—e-(v, ),

@u*s 0% = g G @) 97 =, @r=h n =
and dropping the asterisks, we obtain from (1.10) and (1.11) in the region 0 <r< a
R N SRR ) =
THNE T " e

From (1.8), (1.9), (1.12), (1.13) in the region a =T = = we obtain, for weak conductivity, that

/5 1 9 1 _(az ] ok, _ O,
(3 5 37— )2 =5 + Bn Pagr)un 5= (2.3)
and for ideal conductivity that
o 19 i 1 1 B,
(5 R Thpom: =T U =G 2:4)

From (1.6) and (1.7} we find the linearized boundary conditions at the surface r = 1 (all the conditions other than
those which are satisfied identically are presented):

du, A

o TR T
a 1 a R a
= oy 50 = 05 () + -5 Prr (1 — L) - P (R — Eonp) (2.5)
i} a
__8%2 ;‘;, R b, =he . (2.6)

In the case of ideal conductivity the last term in (2.5) and the second equation of (2.6) are replaced by
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a
PH (hz — l'LT'hza> 2 €9 == 2o, (207)
- Moreover, the unknown functions must satisfy the radiation conditions and be bounded as r — «,

Zero initial conditions are assumed. -

. We note that the first equations in (2.3) and (2.4), which contain terms that reflect the influence of the magnetic
field, are independent, i.e., the systems of equations in each of the considered approximations broke down partially.
But in boundary conditions (2.5)—(2.7) the connection between the elastic and electromagnetic fields remains.

In the following we examine nonmagnetizable media yu = u%; then the boundary conditions simplify. We see from
conditions (2.5) and (2.6) that in the case of weak conductivity the connection between the fields disappears in the
boundary conditions as well, i.e., we can determine independently the field of the elastic variables and then the
electromagnetic field. An analogous simplification also takes place in MHD [2]. We see from (2.7) that for ideal

conductivity with u =% the connection between the fields remains in the boundary conditions.

3. Equations (2.1)—(2.7) are Laplace transformed

F(r, %)= S 1, t)exp (—nty .

The solutions in transform space, satisfying the boundary and initial conditions, are written in the case of weak
conductivity as

I
D= QOCO—KAQ%’('—M//G'%' 0 <r<a}, (3.1)
Ky (Qr)
U — o %A1K1 (Q) er %AK (Q) [QKl (QI‘) + k—l—?G - K1 (QT)]
(e<r<o) . (3.2)

Here I)(2) is the modified Bessel function and K (z) is the Macdonald function,

- K @ I
Q=V#+ RnPurs A=y73g 7»+26 +Q Kll((sz)) Po €o% Ijgﬁg (3.8)

In the case of ideal conductivity

0<lr<ag (@<r< )

I K,
Q= CIoCo ;&%%//—CZ‘D))— y Uw=¢qo—3— 1(341) Ky (n7)

a_ g To(wr/er) _ 7 Ki(u) .
H=— o1 Adi(n/er) ? #:= ¥Vi+p, & Kolar) . (3.4)

a I . K - !
B = o s garar Ee=qo—‘A‘—’“’A1<m»

3 = — a0 2B Ko () + — 2+ K )] (3.5)

where

Ko Zo(%/co) K Tolkle)
n= e M=y n VI PR 4 e BT P 1)

We note that in the expressions for A and A;, appearing in (3.1)—(3.5), the first and second terms characterize
the magnetoelasticity, the third term characterizes the acoustics, and the fourth term characterizes the
electromagnetic field in the acoustic medium.

It is very difficult to construct the exact transformation of the resulting solutions with the aid of the Riemann-
Mellin integral. Therefore, in the following we construct approximate asymptotic solutions which are valid near the
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front of the magnetoelastic wave.

The cylindrical functions appearing in (3.1)—(3.5) are replaced by their asymptotic representations for large %,
in which two terms are retained. Retaining in (3.1)~(3.5) all terms up to and including order 1/% and making estimates
of the dropped terms, we obtain the approximate values of the transforms, from which we then find the originals. We
present the final expressions for the radial stresses oyy.

For the weakly conducting medium

— —1
Srr o SR RRPC =y )] (o + A [ — (r— DT fOr E> (0 —1)>0
20 (1+poca) V7
6,/9 =0 for t<(r—1). (3.6)
For the ideally conducting medium
O . 4 [—ALUG 1
i AV?{ e
A — AL 146 A r—1 \ r—1 . ey
—_ exp|— 2 {t —————1ll for:>_T"=' >0,6,/¢;=0 for tc—ee= . (3.7
+(BV1+PH A2 ) XP[ B( V1+PH)]} r >V1+pH/ o o <]/1+PH
Here
3/800—1/290002—7/B+7h/(7~+QG)+l/‘lRmRH __'3_ _7____ A
Ao = T poco —8c 4L=F Tiyw
1 26 1 3 Yi+2° 3 irPpP
A=—T‘!‘m—‘i‘TPocozo-FT'V—;;-‘E)—}‘”g‘PH(1‘}'}-/—&—}{)
S P
B=V1+PH+poco+~§- (3.8)

Solution (3.6) was obtained with the asymptotic error [t — (r — 1)] <35 &, where ¢ is the specified computational
accuracy. Solution (3.7) is valid in a very small vicinity of the wave front. As [t — (r — 1)]—0 in (3.6) and [z — (r — 1)1/
YT+ Pz—0in (3.7), these solutions become exact for the wave fronts.

4. Let us investigate the influence of the magnetic field on opp. We see from (3.6) in the case of weak
conductivity that for r > 1 with increase of Ry, and Py the quantity loypl decreases exponentially. Behind the wave front
there is some increase of the stresses, which follows from (8.8): the quantity A, increases with increase of Ry PH.

In the ideal conductivity case we first of all estimate the influence of the electromagnetic field of the
magnetoacoustic medium. In expressions (3.8) for A and B there appear the terms y 1 Py /e and Py , which we
write in the form ¢,/ a V1 P and ¢, /Py and compare with unity. Since the strong constant magnetic fields which can
be created in laboratory conditions at the present time are of the order of 10 tesla [4,5], these terms will be small
quantities of higher order. This implies that in the case in question in an acoustic medium {or vacuum) we can neglect
the displacement currents if we are examining slow motions in the adjoining magnetoelastic medium,

In the case of ideal conductivity, increase of Py leads to increase of the wave front propagation velocity by a
factor of Vi + P, and reduction of the wave front amplitude by a factor of (8 V1 + Pg)™; we see from (3.8) that the
quantity B increases.

The presence of the acoustic medium reduces the stresses in both cases, which is a result of its inertial and
elastic properties.

5. As examples we examine a weakly conducting medium of the bismuth type with conductivity o which is 100
times less, so that the condition Ry, < 1 is satisfied, and an ideally conducting medium of the copper type with

conductivity o = «. In the cavity there is an acoustic medium with the properties of water; the parameters are:

in the first case (a)

00/ po = 0.102, ¢/ c,= 0.663, v==033;
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in the second case (b)

palpe = 0413, ¢/ c,= 0.333, ¢/ c, = 0.686-105, v = 0.34 .

The figure shows the radial stresses 6y, normalized in accordance with (3.6) and (3.7), at the wave fronts as a
function of the distance r/a for the weakly and ideally conducting media. The numerals 0, 1, 2, 3 denote the values
0, 0.1, 0.2, 0.3 of the quantities R mPy or Py. These values correspond to strong constant magnetic fields which are
an’order higher than those obtained in laboratories [4, 5].
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6. Analysis of solutions (3.6) and (3.7) and the calculations makes it possible to draw the following conclusions:

a) increase of the magnetic field intensity Hyz leads to reduction of lo.,.! at the wave front in the case of both
weak and ideal conductivity;

b) behind the wave front the magnetic field causes a small increase of lo....| in both cases;

) c¢) the displacement currents in the acoustic medium (or in a vacuum) are small quantities of higher order if B =
=< 10 tesla and in the adjacent magnetoelastic medium we examine processes with velocities which do not exceed the
velocity of expansion waves in the elastic medium;

d) the presence of the acoustic medium in the cavity leads to a reduction of ]Urrl;

e) the influence of the constant magnetic field on the magnetoelastic stresses in nonmagnetizable media can be
detected in superstrong magnetic fields B = 10 tesla.

In conclusion the author wishes to thank Ya. S. Uflyand for discussions of certain questions.
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